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Using linear difference operators, closed form rational approximations are
derived for hypergeometric functions of the form "F'Q(z), p <q + I, complete with
error terms.

1. INTRODUCTION

We will use the following notation for gamma functions, hypergeometric
functions and Meijer G-functions, respectively. If ak' bk , Ck are arbitrary
complex parameters, s, t are complex variables and p, q, m, n are integers
such that 0 <; m <; q, 0 <; n <; p, we set

P

rn(s + Cp + t) = n r(s + Ck + t),
k~n+t

( ) = r(s + t)
s t r(s) ,

q

res + cJj + t) = n res + ck + t),
k-t
k*j

Gm,n ·(zp,q

q

(s + CQ)t = n (s + Ck)1'
k~l

q

(s + cJj)t = n (s + Ck)t;
k~t

k*j

(1.1)
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where L is an upward oriented contour which separates the poles of
r(bM - t) from those of r(I - aN + t), and which runs from -ioo to +ioo
(L =Lo) or begins and ends at +00 (L =L+) or -00 (L =L_).

The basic functional relationships for the G-function are then

Gm,n (w Iap)=Gn,m (w- 1 jI-bQ ),p,q b q,p 1 - a
Q p

wCGm,n (w I a
p

) = Gm,n (w I c +a
p

) .p,q b p,q c +b
Q Q

( 1.2)

If the poles of the integrand in (1.1), interior to L, are simple, then the G­
function is a finite sum of hypergeometric functions, e.g.,

Gm,np,q (
w lap) = f r(b:/ - bk)r(l - aN + bk) W bk

bQ :-:1 r(I - bQ + bk) reap - bk)

X F (1, 1 - ap + bk I(_I)p-m-nw)
p+lq I-b+b '

Q k

P < q, or p = q and Iwl < 1.

(1.3)

For a more detailed discussion of hypergeometric functions and Meijer G­
functions, see [1, 2].

In [5], a linear scheme for rational approximation was introduced and, as
an application, closed form rational approximations were developed for the
Meijer G-functions,

_ r(jJQ) I,p (-I \ I-a p )
F(v) - reap) Gp,q+1 v 0,1 _P

Q
'

=-I-f r(-s)(ap)s v- s ds,
2ni L - (fJQ)s

p> q + 1;

v---.. 00, larg vi < n(p+ I-q)/2,

under mild restrictions on the parameters a"Pk' In particular, with

(1.4)

(1.5)
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it was shown in [5] that

(1) F(v) = limn~co Kn(v)/Hn(v), v (*0) fixed, larg vi < n,

(2) as for the Pade approximants to F(v), Kn(v) and Hn(v) satisfy the
same homogeneous difference equation with respect to n, and

(3) the error, F(v) - K n (v )/H n(v), can be represented by an easily
analyzed, closed form expression.

These results were derived by series manipulation of entire functions.
In this paper, we derive similar results when

p<,q+ I; (1.6)

(I v I> 1 ifP = q + I);

(I. 7)

The results for p < q + I will follow from those for p = q + I, while the
results for p = q + 1 will be derived by manipulation of series with finite
radii of convergence, and analytic continuation. Partial results for p <. q + I
are contained in [2-4]. As the case p = q + 1 is of central importance, we
will subsequently refer to it as the central case, and will discuss, F(v) for this
central case in more detail.

It follows from the general theory of hypergeometric functions and Meijer
G-functions that in the central case F(v) satisfies a linear differential
equation dr'y = °of order p = q + 1, whose only singularities are the regular
singular points at v = 0, -I and 00. Thus, in a neighborhood of each of
these singular points, F(v) has a local representation as a linear combination
of an appropriate basis of,ry = 0. We take F(v) to be initially defined in
Ivl> 1 by the q+IFq(-I/v) in (1.7). The Meijer G-function in (1.6) then
serves to analytically continue F(v) into Iv I<. I. A local representation about
v = °can be deduced from (1.2) and (1.3). Finally, it follows from the
general theory of hypergeometric functions, N0rlund [7], that F(v) has a
local representation at v = e- i " of the form

F(v) = T(-a) T(j3Q) rI +~r R[(v) + R
2
(v), II + v-II < I,

T(aQ +[) l v J

arg(ei"vo) = arg(I + VOl) = 0, Vo = (;) e- i
", RI(-I) = 1, (1.8)

q q+1

a = '\' {3. - Y a}· * an integer,........ J .........
j= I j= [
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where R1(v) and R 2(v) are analytic functions of v in 11 +v-'I < 1. Similar
expansions involving loge 1 +V -I) exist when a is an integer.

PROPOSITION. In the central case, p = q + 1, let F(v) be defined initially
for Iv I> 1 by (1.7), and analytically continued into Iv I< 1 by (1.6). Also, let
F(ve i27c ) be F(v) analytically continued along a path which encloses v = 0,
but not v = -1. Then

Re a> 0, (1.9)

where a is defined in (1.8).

Proof Consider the homotopic paths rand F' in Fig. 1 connecting v
and vei27c

• Let v = (1 + e) e- i
", 0< e <:1, so that the points C and D

coincide. As the initial branch of F(v) is single valued in Ivl > 1, F(v) takes
on the same value at the points A and B. Representing F(v) for v near e- i"

by (1.8), we have for a '* an integer,

Letting e-->O in these equations, we arrive at F(eh)=F(e- i
"). A similar

proof holds when a is a positive integer. I
The following asymptotic estimates were established in [6].

THEOREM 1. Let q + 1, a + 1 be positive integers, n, A, ar (r = 1,...,
q + 2; aq +2= a), fJk (k = 1,... , q) be complex numbers such that n is large,

FIG. I. v-plane, v at A, veil. at D.

640/35/1-2
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Inl-4+oo, argn=6"(n- l
) as n-400, and A,ar ,13k be bounded with respect

to n. Then

Iarg(I + w)l::;;; 2n: - e,Iarg wi::;;; 3n - e,

G()=F(n+I)Gq+2.1 ( II-n-A,a+I-13Q ,n+I)
n w F(n + A) q+2.q+2 W a - a

Q
+2 '

= ~[n2wr(1 + w) -T-Al2 e -(2n+.l)l [ 1 +&((nw) -I) I, nw -4 00,

(LlO)

Iw(l + w)l;) e,

cosh 2~ = I + 2w,

where e is a small positive number independent of n, and arg ~ = 0 for
arg w = arg(1 + w) = O. A Iso, if Gn(vei2") is Gn(v) analytically continued
along a curve which encloses v = 0, but not v = -1, then with v = e - i",

_ 2n:(-It ( A )4T+.\ .-2

-F(I/2+2r+A) n+"2 {l+rt'(n )}, (LlI)

n -4 00, n = positive integer.

Moreover, if

-1 +13k - a r *- a negative integer,

13k - 13j *- an integer,

k = I,... , q, r = 1,..., q + 2;

k*-j, k,j= I,...,q;
(Ll2)

then

L (w) _ F(n + I)
n,k - F(n +A)

X GQ+3.2 ( II-n-A,a+I-13k,a+I-13Q ,n+I),
Q+3.Q+3 w

a - aQ + 2' a + 1 - 13k

= F(-a Q +2+13k) [n 2w]a-tlk{l +&((n2w)-I)}, (Ll3)
F(1 - 13Q +13k)

n 2w -400, Iarg wi::;;; 2n: - e, k = 1,..., q.

Remark 1. The asymptotic expansion of a suitably weighted linear
combination of the Ln.k(w), say, L(w), can be deduced from (Ll3) even
when the parameter restrictions (1.12) are violated, provided suitable limits
are taken. At worst, these limits introduce positive integer powers of
log In 2wl into (Ll3), and hence into the asymptotic expansion of L(w).
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2. CENTRAL CASE, P = q + 1

17

THEOREM 2. Let q + 1, n + 1, a + 1, ,t + 1 be positive integers, ar

(r= 1,... , q + 2; aq+2= a), 13k (k = 1,... , q) be complex numbers such that

a + ,t = an integer :( q + 1;

-1 +13k' -1 - a + 13k * a negative integer,

-1 + ak' -a +ak* a negative integer,

and set

(
-n, n +A, -a +flQ

Hn(v) = q+2Fq+ 1 1
-a + + aQ + 1

k= 1,..., q;

k = 1,..., q + 1;

(2.1 )

Kn(v) = £ (_V)k ~k (-n)k+in +A)k+j(-a + f3Q )k+j(aQ +1)j
k=a j=O (-a + 1+aQ+2h+ j ({3Q)J!

Then for v fixed,

. Kn(v) (aQ +1 I-vI),
hm H ( ) = q+ tFq 13
n~oo n V Q

Ivl> 1;

k = 1,... , q, (2.3)

_ r({3Q) Gt,q+l (-III-aQ +1 ), vEfY, (2.2)
- r(aQ+

1
) q+l,q+l v O,I-f3Q

fiJ = {v: larg vl:( 7C, larg(I + v)l:( 7C, v E [-1, OJ}.

Moreover, the convergence is uniform on closed subsets of fiJ. Finally, if

,t-I-2q+2Re lj~'/i-~: aj (>-2Re f3 k ,

then (2.2) is also valid for v = e ±;".

Proof As the initial branch of F(v) and the polynomials Hn(v), Kn(v)
are single-valued in Iv I > 1, it is sufficient to establish the theorem in the
restricted region.

0' + = {v: -7C:( arg v < 7C, -7C:( arg(1 + v) < 7C, V E [-1,0 I}, (2.4)

and indicate the minor changes in the analysis for the region fi! - = q +, the
complex conjugate of fiJ +. Also, in addition to the parameter restrictions
(2.1) of the theorem, we will tentatively assume

13k - f3j * an integer,

a r - aj * an integer,

k*j, k,j= I, ,q;

r*j, r,j= I, ,q+ 1.
(2.5)
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Under these conditions, Theorems 3 and 4 analyze the asymptotic behaviour
of Hn(v) and Kn(v), respectively, in q+ as n-t 00. Theorem 2 then follows
directly. I

THEOREM 3. Under the conditions of Theorem 2 and (2.5), there exist
numbers A I' A 2 and Bk' k = 1,... , q, such that

T(s - a + fJQ) T( 1 - s + a - fJQ)

T(s-a+ 1 +aQ+1)T(-s+a-aQ+1)
q

= ~ BkT(s-a+fJk)T(1-s+a-fJk)+Alei"S+A2e-i"s, (2.6)
k=1

and

H (v) = F (-n, n +A, -a + fJQ I vei")
n q +2 q + 1 -a + 1 +aQ+ 1

q

= ~ BkLnjvei")+A,Gn(vei27l)+A2Gn(V)'
k=1

(2.7)

k = 1,... , q,

where Gn(ve i2") is Gn(v) analytically continued along a curve which encloses
v = 0, but not v = -1 so that arg(1 + ve i2

") = arg(l + v). In particular,

B
k

= T(-a+ 1 + aQ+1)T(fJk + 1-fJQ)T(-fJk+fJJ k) ,
T(-a + fJQ) T(fJk - aQ+I) T(-fJk + 1+ aQ+,)

ei27lTA =e- i27lTA =A = T(-a+ 1 +aQ+,)
, 2 0 2nT(-a + fJQ) ,

1 q, q +,' 1
2r = a - - - q + '\ fJ - '\ a = a - - - q + a.

2 b' k :-:1 r 2

For v E q + as defined in (2.4),

Hn(v) ~ A I Gn(ve i27l ),

~ T(-a + 1 + aQ+1) [n2v]T(l + v)-T-.~/2 e(2nHlt,
2 Vir T(-a + fJQ)

cosh 2¢ = 1 + 2v, Re ¢ > 0,

nv -t 00,

nv -t 00, (2.8)
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where n, A satisfy the restrictions of Theorem 1. With the same notation,
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Hn(-I) ~Ao[e-iz"TGn(ei")+ eiz"TGn(e- i,,)],

(_1)n r(-a + 1 + aQ + 1) (n +Aj2)4TH.
r(lj2 + 2r + A) r(-a +PQ) .

n a positive integer; Re(4r +A) > Re(2a - 2Pk)'

n ---> 00,

n---> 00, (2.9)

k= l,... ,q.

Proof The identity (2.6) is just a paraphrase of the partial fraction

decomposition, y = ei2
""

r(-a+ I +aQ+,) n~~:(y_eiz,,(a-ar))

r(-a +Po) nk= ,(y - ei2 ,,(a-llk))

<, dky
- _ eiz,,(a-Ilk) +c,y+co'

k=' y-

For Ivl < 1, Hn(v) has the Mellin-Barnes integral representation

Substituting identity (2.6) into this representation and identifying the
resulting integrals, we arrive at (2.7) for IvI< 1. By analytic continuation,
(2.7) then holds for all v. In particular, setting v = e-i" in (2.7) gives the
representation for H n(-1),

q

Hn(-I) = ~ BkL n.k(l) +Ao[e-iz"TGn(ei,,) + eiz"TGn(e- i")]. (2.10)
k='

Replacing the various functions in (2.7) and (2.10) by their asymptotic
expansions as given in Theorem 1, and picking out the dominant terms of the
resulting expressions, we arrive at (2.8) and (2.9). Note that the algebraic
condition in (2.9) for 4r + A is the same as the algebraic condition (2.3).
Also, note that ~ as defined in (1.10) is a function of w, i.e., ~ = ~(w), and
that for Iwl < 1,

By analytic continuation, this relation continues to hold for all w, and with
w=vei",

Re{~(vei2")} <0 < Re{~(v)},
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Remark 2. Equations (2.7) and (2.8) remain true even when n is not a
positive integer, although in that case Hn(v) is not a polynomial, and (2.7)
then serves to analytically continue Hn(v) into Ivl;> 1.

THEOREM 4. Under the conditions of Theorem 2 and (2.5), and with the
notation of Theorems 2 and 3,

where Gn(ve i27r
), F(ve i27r

) are Gn(v), F(v), respectively, analytically continued
along a curve which encloses v = 0, but not v = -1. For v E C! +

With the same notation as in Theorem I,

nv -> 00. (2.12)

n -> 00,

Re(4r +..l.) > Re(2a - 2fJk)' k = I,..., q.

Proof It is sufficient to establish (2.11) for Iv I < 1, as all the functions
involved can be analytically continued into the region Iv I ;> 1. In particular,
(2.11) is valid for v = e -i". The asymptotic estimates then follow directly
from Theorem 1.

Let Ik(y/v) be defined by (1.5) and

n

Kn(v, y) = L lIk(y/v).
k=a

Then for Iyl,,;;; lvi,

T(n + ..l.)(fJQ)-a I ( / )
r(n + 1)(aQ+1La+l k y v

_G 1•2q+2 (Y 11-aQ+l,a+l-fJQ-k,l-n-..l.-k,n+l-k)
- 2q+ 3.2q +3 vOl - fJ a - a - k ', Q' Q+2

where L, the contour of integration in the integral definition of the
G~;/H~q+3(Y/V) function, is of the form L +. When y = v, this contour L can
be deformed successively into contours of the form L o and L _. Evaluating
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the final integral by the residue calculus, we obtain a result formally
indicated by setting W= 1 in (1.2) and (1.3), i.e.,

(2.13 )

\' kG 2q+2,1 (1 I 1,130 , -a + 1+ aO+ 2 + k )
- V 2q +3. 2q +3 13 k 1 k k'
k~G ao+I' -a + Q + ,n +I\, + ,-n +

For Ivl < I, let Fr(v) and Gn,r(v) be defined by

q+1

F(v) = )' va'Fr(v),
r~l

q+2

G (v)= \' vG-a'G (v).n ~ n,r
r=1

(2.14 )

Explicit expressions for the Fr(v) and Gn,r(v) can be deduced using (1.3). In
particular, aq +2 = a, and

where Hn(v) is defined in Theorem 3. Comparing the coefficients of vk in
(2.13) with those in vGFr(v) Gn,r(v), we see that when a+A is an integer
~q + I,

Kn(v) = Kn(v, v),

_ T(-a + 1 + aQ + I) q~,1

- T(-a + 130 ) r~ I

(2.15)

T(f3o - ar) T(l - f3Q + ar) vGFr(v) Gn,,(v)

T(-a6:2 + a r ) T(l + a6:2 - ar )

For more details, see [5, Theorem 4].
Next, consider the identity

T(-a + 1 + a ).
_--,-__::-""-Q+-,-I_e,,r<s-tlT(1 + a - s) r( 1 - 1- a + s)

r(-a + 130 )

1 ret +130 ) reI - t- 130 )

(2.16)
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where A I' A 2' B k are defined in Theorem 3. To prove this identity, replace s
by t + a in (2.6), and subtract this expression from (2.6). Mter some
manipulation, one arrives at (2.16). Note that s = t +a is only an apparent
singularity of (2.16). Let IYI < 1, and sP+ be an s contour of the form L + '
which separates the poles of F(-s +a - aQ +2) from those of res + n +A)
F(s - a + fJQ)' Then multiplying (2.16) by

1 r(-s + a - aO+ 2)(n + A)s s
- Y
hi r(-s + a + 1 - fJo)(n + lLs

and integrating the resulting identity with respect to s over sP+ , we obtain the
identity

q+l

X Lr~l (yei,,)a-<>r F(t + a r)F(1- t + ar) Gn,r(Y)

+ r(-a+ 1 +aQ+ 1)F(a-aO+1)F(t+a)F(1-t-a) e-i"tH ()
F(-a + fJo) F(1 + a - flo) n Y

1 F(t + flo) F(1 - t - fJQ )

(2.17)

Note that t = -a is only an apparent singularity of (2.17). Let Iv I < 1, and
~_ be a t contour of the form L _, which separates the poles of F(t + a o + 1 )

from those of F(-t)F(-t + 1 -fJQ)' Then multiplying (2.17) by

and integrating the resulting identity with respect to t over ~_ , we obtain the
identity, a = an integer ~ 0,
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T(-a + 1 +aQ+ I) \+,I T(f3Q - ar) T(l - flQ+ar) yaGn,r(y) Fr(v) (~) a,

T(-a + flQ) :-::1 T(-a6:2 + ar) T(1 +a6:2 - ar) y

= \' BkEk(v) " "2 "2(f3) ( fl) Ln.k(ye"') +A[F(v) Gn(ye' ") +A 2F(ve' n) Gn(y)·
k= [ ~ k r 1 - k

(2.18)

Equation (2.11) then follows from (2.15) and (2.18) with y = v. I

Remark 3. If (i) is replaced by (-i) in (2.7), (2.8), (2.11) and (2.12),
one obtains results valid in @-. The tentative assumptions (2.5) can be
relaxed completely by taking limits in (2.7), (2.10) and (2.11), and noticing
that since this limit process introduces, at worst, positive integer powers of
log In 2vl into the Ln.k(vein

) terms, the terms in (2.8), (2.9) and (2.12) are
still dominant.

Remark 4. The parameter restrictions in Theorem 2 are not excessive, as

p<"q+1 (Izl<" 1 ifp=q+ 1).

Thus, for m sufficiently large, the restrictions (2.3) are satisfied.
The rate of convergence in (2.2) can be characterized as follows.

THEOREM 5. Under the conditions of Theorem 2, and (2.5), and with the
notation of Theorems 1-4, we have

- - - \' l - Ek(v) J inSn(V) - F(v) Hn(v) Kn(v) - k-::l Bk F(v) r(f3k) r(l- flk) Ln,k(ve )

+ lA1F(V) +A 2F(v) + (-lY ~[ BkEk(v)JGAv), (2.19)

which reduces for v = e- in to

Re (j > O.

(2.20)
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For n large,
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Sn(v) ~ Hn(v) 2 vn(1 + V)T+A/2 e-(2n+AH

q ~inlhr( fJ + fJ*k)
X ~ [r(fJk)r(l-fJk)F(v)-Ek(v)] e - k Q [nZvla~T-/\

k=! r(-fJk+ 1 + uQ+2)

nv -t 00, v E @+; (2.21)

Sn(-l) ~ Hn(-l)(-l)"+a r(1 + 2r + A)

X £ [r(fJk) r(l - fJk) _ Ek(e-in)] r(-fJk + fJJk) n
Za

-
4T

-,l-Zlh ,
k~1 r(-fJk + 1 + uQ+2)

n-too, Re(4r+A) > Re(2a-2fJk)' k=l,...,q. (2.22)

For Ivl > 1, larg vi,,;; n,

wherefor Ivl > 1,

G (v)= r(n + 1)T(n+A+a-uQ+1)v-n- A

n r(2n + A+ 1) r(n + A+ a + 1 - fJQ)

F ( n+A+a-uQ+z 1-1)
X q+ 2 q+ I 2n + A+ 1, n + A+ a + 1 - fJQ -v- ,

Mn.k(v) = r(fJk - uQ+z)(n +A)a-ilk (2.24)
r(fJk + 1 -fJQ)(n + 1La+ilk

F I 1, fJ k - uQ + 2 1-1 )
X q+3 Q+2\jJk+n+1-a,fJk+1-n-A-a,fJk+l-fJQ -v- ,

Ft(v) = (-I)q+a(UO+1)1_a r(fJk - fJJk)
r(2 - fJk)(fJoLa r(j3k - uQ+I)

(
1,-fJk+1+uQ+l '-vI).

X q+ 2Fq+ 1 -fJk + 2, -fJk + 1 + fJQ

Proof If in the definition of Sn(v), one substitutes for Hn(v) and Kn(v)
the representations (2.7) and (2.11) developed in Theorems 3 and 4, one
obtains an expansion for Sn(v) which agrees with (2.19) in the Ln.k(vei,,) and
Gn(veiZn ) terms, but whose Gn(v) coefficient is A 2[F(v)-F(veiz,,)]. If
Re (J > 0 and v = e- in , it was shown in (1.9) that F(e in ) = F(e- in ), so that
this Gn(v) coefficient is zero, and the resulting expansion for S,.(e- i")
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reduces to (2.20). More generally, we proceed as follows. From (2.6), it
follows that

(_l)a T(-a + 1 +aQ+ I) res + fJQ)T(1- s - fJQ)

T(-a+fJQ)T(s+ 1 +aQ+1)T(-s-aQ+1)

q

=(-ly L BkT(s+fJk)T(I-s-fJk)+Alei"s+A2e-i"s. (2.25)
k=1

Multiplying this identity by

and integrating the resulting identity with respect to s over Y_, an s contour
of the form L _ which has no poles of T(-s) T( 1 - s - fJQ ) in its interior, we
obtain the relationship

q

o=A IF(v) + A 2F(ve i2
") + (_1)a \' BkEk(v),

k=l

which can be solved for A 2F(ve i2"). Substituting this expression for
A 2F(ve ih ) into the above, derived expansion for 8 n(v), one obtains (2.19).
The asymptotic relations (2.21) and (2.22) follow directly from Theorems 1
and 3.

For Ivl > 1, it follows from (1.3) that Gn(v) has the representation quoted
in the theorem, that

and that

F Ek(v)
(v) - T(fJk) T(1 - fJk)

= (-1 )q+a T(-a + fJQ) T(fJk - aQ+ I) T(1 -~: + aQ+I)(vei,,)-I +13, Ft(v).
T(-a+ 1+aQ+1)T(fJk-fJQ )T(1-fJk+fJQ)

Substituting these expressions into (2.19), we obtain, after some cancellation
the result

q

8 n(v)= L va-lFt(v)Mn.k(V)
k= I
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The constant coefficient of F(v) Gn(v) in this expansion can be deduced in
closed form from (2.25) with s = -a. This leads to (2.23). I

Remark 5. An alternate interpretation of Theorems 3, 4 and 5 is the
following. Let ~(y) be the linear difference operator of order q + 2,

q+l

~(y)= ~n(A - q - 1,0) n ~n(A - q - 1 +j, aj)
j=l

q

-yn(n+A-q-2)g-1 n ~n(A-q+j,fJj)'
j= 1

where fli=IPj =P1P2 "'P" g-j is the shift operator on n, i.e., g-jYn=
Yn-j' and

W(A,.u) = (n+A-I)(n+.u) gO_ n(n+A-l-.u) g-l.
n 2n + A. - 1 2n +A-I

From the simple computation

W(A ) \ (n+A.)s 1= (n+A-I)s( )
n ,.u I(n+ 1)-s \ (n+ ILs s+.u,

it follows that

\ (n+A)s 1 (n+A-q-2)s
~(Y)I(n+ILs\= (n+ILs (s-a+aQ + 2)1

(n +A - q - 2)s+ 1 ( fJ )
- Y (n I) s - a + Q I'+ -s-I

(2.26)

The standard Mellin-Barnes integral representations for the functions
L n,k(ve i1r ) (k = I,... , q), Gn(v) and Gn(ve i21r

) with s as the integration
variable, contain the function (n +A)J(n + ILs as a kernel. Using (2.26), it
can be shown that ~(v) annihilates these integrals.

Thus, the functions

where Give i21r
) is Gn(v) analytically continued along a contour which

encloses v = 0 but not v = -I, satisfy the linear difference equation of order
q + 2,

~(v){Yiv)} = O. (2.27)
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In fact, Theorem 1 shows that as functions of n, gj is a linearly independent
set, and hence that gj is a global basis of (2.27). In particular, Theorems 3
and 4 then imply that the polynomials Hn(v) and Kn(v) also satisfy (2.27).

It can also be shown, that for Iv I< 1 the functions

,-5?o = {Gn.r(v) (r = 1,... , q + 2) as defined in (2.14)}

form a local basis of (2.27), while for Iv I > 1 the functions

,CfJoo = {GnCv), Gn(ve i27r
), Mn,k(V) (k = 1,..., q) as defined in (2.24)}

form a local basis of (2.27). Theorem 5 is then seen to be just representing
the solution Sn(v) of (2.27) in terms of the bases gj and gjoo'

Remark 6. Some insight into the best choice of A can be deduced from
(2.22), which can be rewritten in the form

n ---+ 00,

where the constant w is independent of A and the parameter a. Hence, the
bound for Sn(-1)/H n(-1) is smallest when A is largest. In view of the con­
ditions

a+A~q+ 1, O~a,

this means that one should take a = 0, A= q + I-at least at v = -1, the
point of "worst" convergence.

3. GENERAL CASE, P ~ q + 1

Our main result is the following.

THEOREM 6. Let p + 1, q + 1, n + 1, a + 1, A + 1 be positive integers, a r

(r = 1, ... ,p + 1; ap + 1 = a), fJk (k = 1,..., q) be complex numbers such that

a +A = an integer ~q + 1;

-1 +fJk' a - fJk' -1 - a +fJk 1= a negative integer, k = 1,... , q;

fJk-fJi 1=an integer, k1=j, k,j= 1,...,q;

-1 + a k , -a + a k 1= a negative integer, k = 1,... ,p,
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and set
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Hp,q(v) = j" (-n, n+A, -a + fJQ I-V),
n q+ p -a + 1 +ap

KP,q(v) = )'!.., (-vt I,k (-n)k+in + A)k+i-a + fJQ)k+j(ap)j
n {-='a j~O (-a + 1 +ap)k+ik +j)!(fJQ)jj! .

Then for p <. q + 1 (I vi> 1 if p = q + 1),

s~,q(v) =?q ~; I ~I ) H~,q(v) - K~,q(v),

= rea + 1 -fJQ) (ap 1-=2-)
rea - ap ) ?q \PQ v

X r(n + 1) r(n +A+a - ap)[(-I)q-p+ IV] -(n+,A)

r(n+A+a+ I-fJQ)r(2n+A+ 1)

F ( n+A,n+A+a-ap I (-l)q-P)
X p+ 1 q+ I 2n + A+ 1, n +A+a + 1 - fJQ v

f (ap)l-a r(-a +fJk) (_V)a-l

+ k~l (fJQLa r(2 - fJd (fJ"t k - fJk)

X F ( I,-fJk+I+ap 1-1) (n+A)a-lh
p+l q+l -fJk+ 2,-fJk + 1 +fJQ v (n+ ILa+llk

F G I,fJk-a,fJk-ap ,(-I)q-P)
X p+2 q+2 .

k+n+I-a,fJk+l-n-A-a,fJk+l-fJQ v

(3.1 )

Proof If P = q + 1, (3.1) reduces to (2.23) in Theorem 5. The other
cases are confluent limiting forms of this p = q + 1 case. To see this, let
a=aq+1 • Then

lim H~+ l·q(av) = H~·q(v),
o~oo

lim K~+l,q(av)=K~,q(v),
o~oo

lim S~+l,q(av) = s~,q(v),
o~oo

which is the p = q case. After q - p + 1 such limits, one arrives at the
general statement of the theorem. I
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Remark 7. Preliminary computations indicate that for v (:t 0) fixed,

29

H~,q(v) '" (n + '\'M-a + fJQ)n vneb/2v,
(-a + 1+ ap)n

(
n+'\',n+'\'+a-ap I (-I)q-P) "'eb/ 2v ,

P+I
F

q+l 2n+A+ l,n+A+a+ l-fJQ v

(n+A)a-llk F ( l,fJk-a,fJk-ap
(n + IL a +

llk
p+2 q+2 fJk+n+l-a,fJk+l-n-A-a,fJk+l-fJQ

n -4 00; (3.2)

n-4OO; (3.3)

p ~ q, b = I if p = q,

which would imply

b = 0 if p <q,

p~q+l.
lim K~,q(v) _ (a p I-vI),

n->oc> H~,q(v) - j'q \PQ

Rigorous derivation of (3.2~(3.4) would then establish (3.5).
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